Research

5 Ways to Select a High Value Predictive Workforce Project

By Greta Roberts, Oct 24, 2017

Today’s business executives are increasingly applying pressure to their Human Resources departments to “use predictive analytics”. This pressure isn’t unique to Human Resources as these same business leaders are similarly pressuring Sales, Customer Service, IT, Finance and every other line of business (LOB) leader, to do something predictive or analytical. It’s easy to waste time on predictive projects that deliver little value. What follows are 5 important steps to follow when selecting a predictive project.

1. Identify a business problem to solve.

Almost everyone working on modern predictive analytics discusses the need for a defined business problem before engaging in a predictive project. And yet, the #1 question I get in speaking with businesses is “I need to do a predictive project, but I don’t know what to work on”.

Without a specific problem to solve, your analyst or vendor will do nothing more than crunch data hoping to find something interesting. Crunching data without a specific objective, is a very expensive and typically a very unproductive use of your company’s time and money.

Consider these examples:

  • Imagine searching for a house on the internet before you’ve decided what kind of house you want. You’ll find some interesting ideas but nothing that will make you “act on” buying the house.

  • Imagine reading Wikipedia looking for some “truth” without defining what question you’re trying to have answered. You’ll find some interesting ideas but likely none of them will give you the truth you’re looking for.

You need to first know what you’re looking for before you embark on a predictive project.

2. Decide if you want to solve an employee-related process problem in HR - or an employee related business problem in a line of business.

Examples of HR Problems: Predict who is going to retire; predict which training will yield the highest attendance; predict how your current hiring processes will affect discriminatory hiring practices; predict your company’s requirements for engineers

  • Benefits of solving an HR problem: You’re solving a problem that is meaningful to your department (and typically only to your department).

  • Downside of solving an HR problem:

    • The rest of the business will be less excited about the working you’re doing to solve an HR process problem.
    • It is harder to quantify the business impact of solving an HR process problem.

Examples of Workforce Problems: Predict which job candidates will be top sales producers for open sales roles, predict which Call Center Reps will be a good fit as a Call Center Manager; predict which truck drivers will be in more accidents

  • Benefits of solving a workforce problem: You’ll solve a problem that is meaningful to the entire business as it is likely to affect revenue or cost. This will get your project much more visibility and additional resources for ongoing predictive work.

  • Downside of solving a Workforce problem: You are likely to get many more requests for predictive work from the business after they see the kind of work you can do that affects revenue and cost.

3. Combine HR data with line of business data.

If you are looking to predict and solve a workforce problem in the line of business (i.e. increase sales, reduce errors, increase calls per day and the like…) the outcome data in the line of business exists in software systems in the lines of business, not in HR.

As an example, sales performance, or calls per day data exists in Sales Operations or the Call Center or some other non-HR database somewhere.

You can’t predict which sales candidates are going to make their sales numbers without sales data from the sales department. You need to use line of business data as well as HR data. Unless you only want to predict something that impacts HR, you’ll need data from the line of business as well.

4. Go beyond predicting trends. “Individual” predictions deliver the greatest ROI.

Many departments have been forecasting trends for years – and in fact many predictive projects we hear about are in fact older-school forecasting projects. We need to move beyond forecasting to deliver the kinds of ROI that excites your C-Suite.

Forecasting examples include:

  • Forecasting future inflation rates

  • Forecasting product demand

  • Forecasting workforce trends over the next 1 – 5 years so you can plan

  • Forecasting sales next quarter, next year

  • Etc.

While forecasting is extremely necessary – it is quite different than modern predictive analytics initiatives. To reap the ROI of modern predictive capabilities – organizations need to move to predicting to the individual.

Predicting “to an individual” examples include:

  • Predicting which specific job candidate has a high probability of being a top / bottom performer

  • Predicting which specific customer prospect is going to click the coupon and buy the offer

  • Predicting which specific vendor is going to go out of business

The ability to predict to this level of granularity should be the goal of modern predictive projects. ROI is higher because it helps your company to take specific action with high cost or high revenue potential targets.

5. Go beyond predicting flight risk of existing employees. Make a prediction about flight risk before you hire a candidate.

Many companies focus on predicting the flight risk of existing employees as an early predictive project. This reminds me of a bank predicting which loans will fail “after” they’ve already loaned money. After the relationship is extended is the wrong time. It’s too late.

Modern predictive analytics allows you to predict “before”. That’s the point. Predict before you make the mistake. Banks put a lot of effort into creating predictive models that predict your probability of paying or defaulting on a loan before they extend the loan.

About the author

Author photo

Greta Roberts is an influential pioneer of the emerging field of predictive workforce analytics where she continues to help bridge the gap and generate dialogue between the predictive analytics and workforce communities.

Since co-founding Talent Analytics in 2001, CEO Greta has successfully established the firm as the recognized employee predictions leader, both pre- and post-hire, on the strength of its powerful predictive analytics approach and innovative Advisor™ software platform designed to solve complex employee attrition and performance challenges. Greta has a penchant for identifying strategic opportunities to innovate and stay ahead of the curve as evident in the firm’s early direction to use predictive analytics to solve “line of business” challenges instead of “HR” challenges and model business outcomes instead of HR outcomes.

In addition to being a contributing author to numerous predictive analytics books, she is regularly invited to comment in the media and speak at high end predictive analytics and business events around the world.

Follow Greta on twitter @GretaRoberts.


Tags

Unbiased Actionable Insights

Accelerate your organization’s journey to analytics maturity

Get the data sheet to learn how the Research & Advisory Network advances analytics capabilities and improves performance.

Download data sheet »

Become a RAN Client

Get answers to your toughest analytics questions with IIA's Research & Advisory Network.

»